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Abstract

Data warehouses created for dynamic scientific
environments, such as genetics, face significant
challenges to their long-term feasibil ity.  One of
the most significant of these is the high
frequency of schema evolution resulting from
both technological advances and scientific
insight.  Failure to quickly incorporate these
modifications will quickly render the warehouse
obsolete, yet each evolution requires significant
effort to ensure the changes are correctly
propagated.  DataFoundry util izes a mediated
warehouse architecture with an ontology
infrastructure to reduce the maintenance
requirements of a warehouse.  Among other
things, the ontology is used as an information
source for automaticall y generating mediators,
the programs that transfer data between the data
sources and the warehouse. The identification,
definition, and representation of the metadata
required to perform this task are the primary
contributions of this work.

1 Introduction

The DataFoundry research project at LLNL’s Center for
Applied Scientific Computing is investigating data
warehousing in highly dynamic scientific environments.
By developing a warehouse within the rapidly evolving
domain of genetics, we are able to evaluate the impact of
design decisions in a realistic environment.  This
warehouse is aimed at providing a uniform view of data
obtained from several heterogeneous data sources, each
containing distinct but related data from various genome
domains. These data sources are primaril y large,
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community resources whose purpose is to distribute
information to the research scientists.  Each of these
sources contains both information for which it is the sole
distributor, and information that can be used to associate it
with data from other sources.  Thus, it is impossible to
completely ignore a particular data source and still
provide access to all of the data.  While the underlying
data management systems vary from flat files to OODBs,
interaction with the underlying data source is primaril y
through form-based queries. Although this warehouse will
greatly aid biologists by providing a single, consistent
interface to this data, several significant obstacles must be
overcome in order to ensure its long-term feasibilit y.

Primary among these challenges is reducing the
impact of schema modifications on warehouse availability
and reliability.  Based upon previous efforts, we anticipate
one schema modification every 2-4 weeks once all of the
desired sources have been integrated.  Depending on how
extensive the change is, directly incorporating a
modification requires explicitly modifying some
combination of the wrapper program, the transformation
method, and the warehouse population method.  Since the
warehouse will remain out of date, or worse inconsistent,
until the mediator is able to correctly translate data from
the new representation to the desired warehouse
representation, this brute force approach results in an
unacceptable amount of warehouse down-time.

DataFoundry is based on a mediated data warehouse
architecture, in conjunction with a carefull y designed
ontology infrastructure, to address this problem.  The
mediated architecture provides a balance between data
cached locall y for performance, and data stored remotely.
Mediators interact with data source wrappers to obtain the
data contained within the source and transfer it to the
warehouse while resolving semantic and syntactic
confli cts. The DataFoundry ontology is a practical effort
to automate mediator generation, thus reducing the work
required to adapt to source schema changes.

This paper focuses on the use of an ontology as a
formal method to store and make use of the metadata
required to perform automatic mediator generation.  A
summary of related efforts is presented next, followed by
a brief discussion of mediators and their roles in managing
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schema change.  Section 4 presents the DataFoundry
ontology and motivates the design decisions, while
Section 5 outlines how it is used to generate the mediators.
We conclude with a discussion of possible future research
directions.

2 Related Work

There are two areas of ontology-based research related to
this work: using ontologies to describe domain-specific
knowledge, and using ontologies as an information
resource for database integration.  Efforts such as Cyc
[LG90], the Generalized Upper Model [BMR94], the
Unified Medical Language System (UMLS) [COS] and
Mill er’s work on information capacity [MIR93] are
primarily concerned with accurately representing a
particular subset of domain specific knowledge.  This
work focuses on ensuring the semantics represented in the
model accurately reflect the real world semantics of
domain-specific concepts.  Other efforts such as the
Information Manifold [KLS95, LRO96, FKL97],
TSIMMIS [CMH94], and InfoSleuth [BBB97] utilize
ontologies as an information repository used for guiding
program execution.  In these projects the semantics of the
concepts represented in the ontology, while important, are
not the focus of the work.  Because this is similar to our
approach, two of these projects, the Information Manifold
and TSIMMIS, are discussed in slightly more detail.

The Information Manifold uses a federated database
architecture to provide a consistent view of data
represented in a distributed heterogeneous environment.
The emphasis of the project is on correctly identifying the
relevant set of data sources for a particular query.  To this
end, an ontology is used to represent information about
the contents of each data source.  The available
information includes both the type of information
available from the data source, represented as a query on
the global schema, and the coverage of the source,
represented as the li kelihood that an arbitrary instance of
the data set is present in the data source.  When given a
query, the Information Manifold uses this information to
identify the relevant data sources, and order them based
on the how li kely they are to contain information required
by the query.  By querying the most relevant sources first,
this approach makes effective use of limited resources.

TSIMMIS takes a different approach to integrating
heterogeneous data sources; providing a multi-database
interface instead of a federated schema.  As a result, the
end user must resolve the semantic and syntactic confli cts
that arise between the data sources.  To help ease this
burden, the table attributes are tagged with metadata
describing the value’s semantics.  For example, a
temperature field could be marked as “degrees
Fahrenheit.”  While this is a practical approach to
accessing heterogeneous data sources, multi-databases
place a heavy burden on the end-user, and are infeasible

when unless all users are familiar with the semantic
differences between the underlying databases.

An important issue orthogonal to what information is
contained within an ontology, is how that information is
represented.  One of the major problems in the area of
ontology research is the inabil ity to transfer knowledge
between different systems.  This arises not only because
the systems represent different, possibly confli cting,
aspects of a problem domain, but also because the actual
data representations are incompatible.  This is particularly
significant problem in the domain of intelligent agents,
where knowledge sharing between heterogeneous systems
is a critical requirement.  In an effort to help alleviate this
problem, the Stanford Knowledge Systems Laboratory
project, as part of the DARPA knowledge sharing effort,
has developed Ontolingua [Gru92, FFR97]; a language
capable of translating between various ontology
representations including the knowledge interchange
format (KIF) [GSS94] and LOOM [Mac93].  While not a
complete solution, this effort should reduce the effort
required to exchange knowledge between existing
knowledge bases.

As previously discussed, ontologies are a common
method of representing knowledge for interacting with
heterogeneous data sources.  DataFoundry’s usage differs
from these efforts in that it represents a different set of
knowledge; the knowledge required to identify and
resolve both syntactic and semantic confli cts between
information stored in these sources.  The DataFoundry
ontology is represented using Ontolingua, because its
abilit y to translate an ontology into several different
formats provides the greatest flexibil ity.

3 The Role of Mediators

In a mediated warehouse architecture, mediators are used
to obtain data from a source and transfer it to a warehouse.
This data is then used to either populate warehouse tables
or to dynamicall y answer a query; which is irrelevant for
purposes of this discussion.  Ideally, the mediator interacts
with the data source through a wrapper, which is capable
of interpreting the data source and forwarding the required
data to the mediator. Depending on how the data source is
represented (e.g., relational database, flat files, etc.), the
wrapper may simply be the default DBMS interface, or it
may be custom buil t.  Unfortunately, when the wrapper is
custom built the distinction between the wrapper and
mediator may become blurred.  Frequently, in operational
databases the wrapper, transformation, and population
functionality are combined into a single program, as
shown in Figure 1 (a).  In this situation, whenever the
source schema changes, both the wrapper and the
transformation methods must be manually updated to
reflect these modifications.  This can entail a significant
effort due to the complexity of the resulting code.
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 The DataFoundry approach is shown in Figure 1 (b).
In it, the wrapper is clearly separated from the mediator by
a well -defined API.  The API utili zes a collection of
classes and associated methods such as put_position to
accept a raw version of the data from the wrapper.  The
mediator then converts the data to the required warehouse
representation before transferring it to the warehouse.
This API is critical to reducing the warehouse
maintenance costs because it localizes the effect of
schema modifications.  A second advantage of this
approach is that the information required to create a
mediator is clearly defined, and easily represented.
DataFoundry’s ontology describes the required metadata
and defines the appropriate instances.  An ontology
engine (OE) is used to automaticall y convert these
definitions into C++ code representing the API and
mediators.  The primary contribution of this paper is the
identification, definition and description of the metadata
required to perform this task.

4 The Ontology

The DataFoundry ontology represents four distinct
concepts that are required to generate the mediators:
abstractions of domain specific concepts (abstractions),
database descriptions (databases), mappings between a
database and an abstraction (mappings), and
transformation functions to resolve differences in
representation (transformations).  Before exploring each
of these in detail, we provide a high level description of
how they interact, outlined as pseudo-code in Figure 2.
All of the domain specific concepts represented in the
ontology are identified as abstractions, and the data

warehouse and each data source are described as an
instance of the appropriate database type (e.g., relation-
db).  Database table attributes are mapped to the
appropriate abstraction characteristic attributes through
mappings.  When an abstraction defines multiple
representations for the same characteristic attribute,
transformation functions are defined to convert between
them.

It is important to emphasize that this ontology was
defined to provide the metadata required to automaticall y
generate mediators, and does not attempt to full y represent
domain specific knowledge or knowledge about the data
sources.  As a result, our work compliments many
ongoing ontology projects. Where appropriate, we
highlight how this research can be incorporated into our
design, although current plans do not call for such
integration in the near future.

4.1 Abstractions

Abstractions represent knowledge about the concepts
contained within the data sources being integrated.  They
provide the extent of the domain-specific knowledge
represented within the ontology, and thus available to the
OE.  Each abstraction contains the aggregate of the
information provided by the integrated data sources,
including alternative representations of a particular
attribute.  Figure 3 presents an example of the two
components that combine to form an abstraction: the
conceptual definition and its associated characteristics.

The abstraction definitions form a highly simplified
ontology of domain specific concepts.  They identify the
concepts of interest in the domain, and provide a primitive
description of the interactions between them.  Because this

Data Source Warehouse
Parser

Transformations
Data Transfer

(a)

A

P

I

Data Source Warehouse

Mediator

(b)

Wrapper

Ontology

Wrapper

Figure 1: The Integration Process
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representation does not include a significant amount of
domain knowledge, it easy to envision expanding it to
include additional information, such as mapping the
concepts to the UMLS.

Once the domain specific concepts have been defined,
the attributes of interest need to be identified.  Instead of
simply li sting all of the relevant attributes, DataFoundry
groups conceptually related attributes into characteristics.

class world-view;

class database : subclass-of world-view; class abstraction : subclass-of world-view
class flat-file : subclass-of  database; set of characteristics;
class relational-db : subclass-of database class class : subclass-of abstraction;

set of table; class relation: subclass-of abstraction;

class mapping class transformation
complex-attr { source} complex-attr { source}
complex-attr { target} ; complex-attr { target}

location { method}

class characteristic class table
abstraction string { name}
string { name} text  { comment}
set of complex-attr { attributes} set of simple-attr { attributes}

class complex-attr class simple-attr
string { name} string { name}
choice of type
  ( type cardinalit y
    cardinalit y comment;

      comment)
set of simple-attribute;

class type; class primiti ve-type : subclass-of type;   class user-defined-type : subclass-of type;
class string : subclass-of type;        class vector : subclass-of type;

Figure 2: Outline of Ontology Constructs

(define-class atom (?atom)
 "Atoms are the smallest elements we are
concerned with. They can be combined to
form amino-acids and heterogens."
  :axiom-def (subclass-of atom

genomics)
  :axiom-constraints
    (or (basic-chemical-element ?el)
          (heterogen ?el)))

Abstraction Defn.

 (define-instance gene-details  (detailed-rep)
  :def (= gene-abs ‘(genomics
            ((atoms

(id "Unique concept identifiers"
      (warehouse_key oid))
(element "The atomic element represented by this atom"
      (short_element (string 4)))
(position "The atoms position in 3-D space"
      (x float) (y float) (z float))
     (flexibility "How likely is the atom to move elsewhere"
      (temperature  float))
 (alternative_position "Alternate locations for the atom"
      (alternatives

((x float)  (y float)  (z float)
  (temperature float) (probabili ty float)) N)))

Characteristics

Figure 3: Abstractions
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For example, consider the atoms abstraction in Figure 3.
Its position characteristic has three attributes representing
its 3-D position in Cartesian coordinates.  If an alternative
representation (e.g., polar coordinates) was used in one of
the data sources, it would also be included in this
characteristic.  The decision to use characteristics to group
attributes is based on our belief that this information may
be useful i f we investigate using the ontology to
automaticall y define new abstraction-database mappings.

4.2 Databases

As shown in Figure 4, a database description consists of
language independent class definitions that closely mirror
the physical layout of a relational database; the table name
is followed by a li st of attributes.  Much of this
information may be automaticall y obtained from the
metadata associated with most commercial DBMSs.
Unfortunately, this information must be manually entered
for flat file data sources because they rarely maintain this
metadata in a computer usable format.  Since relational
databases are the most common data management system,
the remainder of this paper uses relational terminology
when discussing the representation.  It is important to
remember, however, that the underlying representation is
general enough to handle other architectures including
OODBs and flat file collections.

Figure 4 presents the two warehouse tables that
correspond to the atom abstraction described in Section
4.1.  The attribute representation used by the ontology
generalizes traditional relational attributes in three
important ways.  First, it is able to represent complex data
types, as show by the atom abstraction
alternative_position attribute.  Second, it contains arity
information that defines it as required or optional and
single or multi valued.  Finall y, it provides a mechanism

to define an attribute as either a key of the table or a
foreign key referencing another table.

The emphasis of the current research is on generating
mediators to transfer data to the warehouse representation.
This focus requires we represent a different set of data
than projects such as the Information Manifold which use
source descriptions to identify the set of sources relevant
to a particular query.  The DataFoundry representation
could be expanded to include descriptions of the contents
and importance of the data source if required.  However,
because of the limited number of community data sources
within the genome domain it is unlikely that this level of
detail wil l be needed while we focus on this domain.

4.3 Mappings

Mappings are used to identify the correspondence between
database and abstraction attributes.  Because an
abstraction contains aggregate information about a
concept, including all alternative representations used by
the data sources, there is always a direct mapping between
database attributes and attributes of the corresponding
abstraction.  Thus the basic mapping representation is a
li st of (construct, attribute) pairs that define this
correspondence.

To simpli fy mediator generation, these basic
mappings are grouped by target construct attributes.  Thus
a mapping is defined both from the source to the
abstraction and from the abstraction to the source.
Because of representational differences between the
databases and the abstractions, a mapping may require
data from multiple classes (i.e., a join).  Figure 5
demonstrates how information associated with the atom
abstraction is obtained from the warehouse atoms,
res_in_model and alternative_positions tables, and how
the residue and atom abstractions combine to describe the
atoms table.  To improve readabil ity and reduce data-

 (define-instance dw (relational-db)
  :def (= dw ‘
            ((atom
“the atoms describe the actual position of each
atom in the current structure including het
atoms"

((“self” oid key)
 (“model_res” oid

(res_in_model “self” ))
 (“x” float 1)
 (“y” float 1)
 (“z” float 1)
 (“temp” float 0)
 (“element” (string 4) 1)))

 (alternative_position
 "since most atoms have a single location and an
occupancy of 1.0, this table will be small relative to
the atoms table.  This table defines the alternative
positions of the associated atom, and the
corresponding occupancies.  The occupancy of the
original atom can be determined by subtracting the
occupancies in this table from 1.0"

(("atom" oid (atoms "self"))
  ("x" float 1)
  ("y" float 1)
  ("z" float 1)
 ("temperature" float)
 ("occupancy" real 1) )) )

Figure 4: Database Descriptions
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entry, a short-hand version of the (construct, attribute)
format is used when mapping from a single construct to a
complex attribute.  This notation is shown in the mapping
from the alternative_positions table to the alternatives
attribute.

4.4 Transformations

Transformations identify methods that convert between
different representations of the same characteristic.  These
methods are important in a heterogeneous environment
where data representations vary widely because the source
and warehouse representations are likely to be different.
By including the names and locations of these functions in
the ontology, the OE is able to use them to resolve

representational differences between the data source and
warehouse automatically.  The OE must be able to
identify the attributes affected by each of the methods in
order to identify the appropriate set of transformations to
apply.  The obvious approach is to explicitly associate the
attributes with the method; however, to reduce complexity
and improve readabil ity, we have chosen to use naming
conventions instead.  This greatly simpli fies both the data
entry and the mediator generation task by removing
parameters from the method call while ensuring the source
and target attributes remain easil y identifiable.

As shown in Figure 6, the ontology also allows the
user to define additional methods and data structures.  The
format used to represent these extensions is
straightforward.  The methods are defined by their

  ((genomics atom)
     (dw atoms residue_in_model alternative_positions)
     ((atom "warehouse_key")   (atoms "self"))
     ((atom "short_name") (atoms "element"))
     ((atom "x") (atoms "x"))
     ((atom "y") (atoms "y"))
     ((atom "z")       (atoms "z"))
     ((atom "temperature")       (atoms "temperature"))
     ((atom "alternatives")

(alternative_positions ("x"
  "y"
  "z"
  "temperature"
  "occupancy"))))

To Abstraction

    ((dw atoms)
     (genomics residue atom)
      ((atoms "self")

(atom "warehouse_key"))
      ((atoms model_res)

(residue "model_residue_key"))
     ((atoms "temperature")

(atom "temperature"))
      ((atoms "element")

(atom "short_element"))
      ((atoms "x")      (atom "x"))
      ((atoms "y")      (atom "y"))
      ((atoms "z")       (atom "z")))

To Warehouse

Figure 5: Mappings

(define-instance gene-transforms
(abstraction-enhancement)

  :def (= genome-transformations
  '("/DF/ontology/lib/genome.lib"

  (amino_acid
(translation-methods

(full_to_one_char)
(full_to_three_char)
(one_char_to_full)
(three_char_to_full))

(class-methods
(three_char_to_one_char   (three-char (string 3)) (one_char character)))

(class-data
((name_conversion_table

((one_char character)
 (three_char (string 3))
 (full_name  (string 40))) 28)

      ({ { "A", "ALA", "Alanine"} , { "R", "ARG", "Arginine"} ,…} ))))

Figure 6: Transformations
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signature, while the data structures contain the associated
name, attribute list and an initial value.  While these
extensions are not used by the OE, they provide additional
flexibilit y to the transformation method.  For example, a
chain may define several formats for a characteristic
representing sequence of amino acids.  The ability to call
amino_acid methods, such as three_char_to_one_char,
without needing to create instance of the class greatly
simplifies writing this function.

5 Generating the Mediator

Figure 7 outlines how the information expressed in the
ontology relates to the various components of the
mediator.  The entire interface and the majority of code
will be automaticall y generated from the ontology using
the OE – these components are shown with a solid frame.
The mediator functionality is decomposed into two
components: the translation library and the mediator class.
The API available to the parser is a combination of the
individual APIs.  The translation library is a C++ library
containing a set of classes corresponding to, and
automaticall y derived from, the abstractions; of course,

the transformation methods must be explicitly entered.
The mediator uses the abstraction classes and mapping
ontology to perform the transformation from the input
data format, obtained from the parser, to the warehouse
representation, as described by the ontology.  While
converting data to the target representation may require
multiple steps (based on the methods available) the
naming convention makes this a relatively straightforward
search process.  Once the data transformation has been
performed, the SQL interface is used to load the data into
the warehouse.

Incorporating a new data source requires the DBA to
describe the data source, map the source attributes to
corresponding abstraction attributes, ensure that all
applicable transformation methods are defined, and create
the parser.  The OE then creates the new mediator class,
and expands the data class API if needed.  Once a
database has been integrated, adapting to minor source
schema changes often requires only modifying the
wrapper to read the new format.  Significant changes in
the data representation may require the ontology to be
modified and a new mediator created.

Ontology

Abstractions

Transformation 
Descriptions

Data
Mappings

Database
Description

Mediator

User-defined

methods

Data Access
Methods

Translation Code

Method
Description

Data
Definition

API

Translation Library

Transformation
Calls

Population
Code

SQL

Interface

Mediator Class

Mediator
Interface

Figure 7: The Ontology and Mediator
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6 Conclusion

In a dynamic scientific environment, maintaining the
consistency and availability of a data warehouse requires
quickly adapting to changes in the source schemata.
Effectively reducing the impact of schema changes
requires addressing this issue at all levels of the
architecture.  Our extensive use of an ontology
infrastructure is expected to dramaticall y reduce the effort
required to generate mediators, overcoming a significant
obstacle.  Once the OE is completed and full y tested, we
intend to investigate additional uses for the ontology.
Possible future directions include: creating an ontology
interface to the warehouse and integrated data sources,
possibly incorporating existing research such as [LRO96];
and using the ontology as a collection of hints to automate
mapping definition when integrating new data sources,
similar to the hints used in [Cri97].
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